RUSSIAN SPACE ENGINEERING WORKSHOP Thermally Loaded Structures

July 20 - 21, 1993 • The University of Alabama in Huntsville

Course Notebook Contents

I.

Introduction to Thermal Design and Testing

II.

Direct and Inverse Problems

III.

Statements of Inverse Heat Transfer Problems

IV.

Practical Applications of Inverse Heat Transfer Methods

v.

General Operator Form of an Inverse Problem and a Little on the History of the Subject Matter

VI.

Principles of Solution for Ill-posed Problems

VII.

Regularization of Unstable Problems by Tikhonov Method

VIII.

Methods and Algorithms for Solving Inverse Heat Transfer Problems Direct Semi-Analytical Methods

IX.

Methods for Solving Linear Inverse Heat Conduction Problems for Bodies with Movable Boundaries

х.

Numerical Solution of Nonlinear IHCP

XI.

Artificial Hyperbolization of Heat Conduction Equation

XII.

Tikhonov Regularization Method

XIII.

Iterative Regularization Method

XIV.

Comparison of Methods for Solving Boundary IHCPs

XV.

Development and Validation of Mathematical Models of Heat Transfer

XVI.

Application Results

I. Introduction to Thermal Design and Testing

TP
1Optimal Thermal Design (OTD)1/48Thermal inpurpose of form
parameters of the thermal protection and control.General statement of corresponding optimization problem:
$$\widehat{\varphi}$$
 : $min \ J [\vec{p}]$,
 $\vec{p} \in G$ $G = \{ \vec{p} : q_i(\vec{p}, T(\vec{x}, \tau, \vec{p})) < 0, \ i = 1, 2, ..., \ell \}$,
 $T(\vec{x}, \tau, \vec{p}) = A[T(\vec{x}, \tau, \vec{p}), \vec{p}]; \ \vec{p} \in \mathbb{R}^K$,where \vec{p} is a vector of design parameters;
 G is a set of admissible solutions;
 $\{ q_i \}_i^\ell$ are physical and technical restrictions;
 J is a criterion function;
 T is temperature;
 $\vec{\tau}$ is time;
 \vec{x} is a vector of spatial variables;
 A is an operator of thermal mathematical model of system under design

II. Direct and Inverse Problems

III. Statements of Inverse Heat Transfer Problems

E

3

0

Boundary IHCP (an example)

$$\frac{TP}{1}$$
Hathematical Statement of this Problem 1/11
Heat - conduction equation:

$$C(T) \frac{\partial T}{\partial \tau} = \frac{\partial}{\partial x} (k(T) \frac{\partial T}{\partial x}), \quad 0 < x < \beta$$
Initial temperature distribution:

$$T(x, 0) = \psi(x), \quad 0 \leq x \leq \beta$$
Internal temperature history:

$$T(d, \tau) = f(\tau), \quad 0 \leq \tau \leq \tau_m, \quad 0 < d \leq \beta$$
Boundary condition:

$$\frac{\partial T(\beta, \tau)}{\partial x} = 0, \quad 0 \leq \tau \leq \tau_m$$
Heat balance equation:

$$\frac{\partial T(\beta, \tau)}{\partial x} = 0, \quad 0 \leq \tau \leq \tau_m$$
Heat transfer coefficient:

$$\frac{\partial L(\alpha, \tau)}{\partial x} = \frac{\varphi_x(\tau)}{\tau_{\delta}(\tau) - T_w(\tau)}$$

Coefficient IHCP (a example)

$$C(T)\frac{\partial T}{\partial \tau} = \frac{\partial}{\partial x}\left(\lambda(T)\frac{\partial T}{\partial x}\right), \ 0 \le x \le b, \ 0 \le T \le \tau_m$$

$$T(x, o) = \mathcal{G}(x), \quad 0 \le x \le b$$

$$T(o, \tau) = T_1(\tau)$$

$$T(b, \tau) = T_2(\tau)$$

$$T(d, \tau) = f(\tau), \quad 0 \le \tau \le \tau_m$$

$$0 \le d \le b$$

Unknown function : $\lambda = \lambda(T), T_m \in T \leq T_{max}$ Can estimate as many coefficients

1 / 27	No.
(C O N T I N U A T I O N)	$T_{j} \left(b_{j}(\tau), \tau \right) = t_{j}(\tau), j = \ell, 3$ $-k_{j} \frac{\partial T_{j}}{\partial x} \left _{x=b_{j}(\tau)} = q_{j}(\tau), j = \ell, 3$ $-k_{j} \frac{\partial T_{j}}{\partial x} \right _{x=b_{j}(\tau)} = q_{j}(\tau), j = \ell, 3$ $= k_{j} \frac{\partial T_{j}}{\partial x} \left _{x=b_{j}(\tau)} = h_{j}\left[T_{j} \left(b_{j}(\tau), \tau \right) - T_{j}^{*} \left(\tau \right) \right], j = \ell, 3$ $-k_{j} \frac{\partial T_{j}}{\partial x} \right _{x=b_{j}(\tau)} = h_{j} \left[T_{j} \left(b_{j}(\tau), \tau \right) - T_{j}^{*} \left(\tau \right) \right], j = \ell, 3$ $-k_{j} \frac{\partial T_{j}}{\partial x} \left _{x=b_{j}(\tau)} = h_{j} \left[T_{j} \left(b_{j}(\tau), \tau \right) - T_{j}^{*} \left(\tau \right) \right], j = \ell, 3$ $-k_{j} \frac{\partial T_{j}}{\partial x} \right _{x=b_{j}(\tau)} = h_{j} \left[T_{j} \left(b_{j}(\tau), \tau \right) - T_{j}^{*} \left(\tau \right) \right], j = \ell, 3$ $-e_{j} \in T_{j}^{4} \left(b_{j}(\tau), \tau \right) - T_{j}^{*} \left(\tau \right) \right], j = \ell, 3$
ТР 1	

T

$$\frac{\text{TP}}{1} \quad (\text{ C O N T I N U A T I O N }) \qquad 1/29$$

$$\frac{\text{A d d i t i on a 1 conditions}}{\text{A d d i t i on a 1 conditions}};$$

$$T(d_i, \tau) = f_i(\tau), \quad i = \overline{I, N}, \quad d_i \in \overline{D}_i \cup \overline{D}_2 \cup \overline{D}_3$$

$$d_i = \text{const}_i \quad O^{\tau} \qquad d_i = d_i(\tau)$$

$$\frac{\text{K inds of I H C P :}}{\text{K inds of I H C P :}} \qquad \frac{\text{K inds of I H C P :}}{\text{Conduction Problem :}} \left\{ \sum_{j \in J_i(\tau)} \beta_{j=1,2,3} = ?$$

$$2 \cdot \text{Boundary I H C P :} \left\{ t_j(\tau), q_j(\tau), T_j^*(\tau), A_j(T_{w_j}, \tau), e_j(T_{w_j}, \tau), q_j(T_{w_j}, \tau)_{j=1,2,3} = ?$$

$$3 \cdot \text{Coefficient I H C P :} \left\{ C_j(x, \tau, T_j(x, \tau)), k_j(x, \tau, T_j(x, \tau)), S_j(x, \tau, T_j(x, \tau)) \right\}_{j \in J_i,2,3} = ?$$

$$4 \cdot \text{Geometric I H C P :} \left\{ B_j(\tau), \eta(\tau) \right\}_{j=1,2,3} = ?$$

$$O^{\text{CNL}} \leftarrow 5 \cdot \text{Combined I H C P}$$

Combined Heat 1 / 33 Inverse Transfer Problems TP 1 Inverse problem of heat transfer in engineering systems 1. l,i Heat balance equations : $C_{\ell}\frac{dT_{\ell}}{d\tau} = \sum_{j=1}^{n} \alpha_{\ell j} (T_j - T_{\ell}) + 6 \sum_{j=1}^{n} B_{\ell j} (T_j^4 - T_{\ell}^4) + Q_{\ell}$ $T_{\ell}(0) = T_{o}, \ \ell = \overline{I, n}, \quad 0 < \tau \leq \tau_{m}$ $T_{\ell}(\tau) = f_{\ell}(\tau), \ \ell = \overline{I, \kappa}, \ \kappa \leq n$ Causal characteristics is a heat capacity of node ℓ Co is a conductive and convective heat ali exchange coefficient between system of bodies A nodes ℓ and j(the heat fluxes are Bej is a radiative heat exchange arbitrary shown by arrows) coefficient between nodes ℓ and jQ0 is a heat input from space to node and internal generated heat power within node ℓ

IV. Practical Applications of Inverse Heat Transfer Methods

TP Appl: 1/-	6
 IDENTIFICATION OF HEAT TRANSFER PROCESSES IN ENGINEERING DEVICES Identification and correction of mathematical models of engineering systems: integral factors of absorption A and hemispherical emittance & of the outer surface; coefficients for conduction and / or convection between the selected elements of the module; and so on 	
 DETERMINATION OF THERMAL PROPERTIES OF MATERIALS * determination of thermophysical properties and kinetic characteristics of heat-shield materials; 	
 * determination of temperature dependence of heat conduction coefficient of a cooling ingot during steel tempering; * determination of properties of freezing-and-melting soils; and so on 	

$$\begin{array}{c|c} TP \\ 1 \end{array} \qquad \begin{array}{c} Design of HS (continuation 1) \end{array} \qquad 1/50 \end{array} \\ \end{array}$$

C

.

V. General Operator Form of an Inverse Problem and a Little on the History of the Subject Matter

TP
1Difficulties, arising when solving inverse problems
$$1/17$$
General formulation of an inverse problem in the form of operation
equation is $Au = f, \quad u \in U, \quad f \in F, \quad (1)$ where M and M are unknown and observed elements respectively
(vectors, function or vector - functions),
 U, F are metric spaces,
 $A - is a continuous operator.The Hadamard conditions of well - posedness (1902):* it is unique in U ;
* it depends continuously on f .If at least one of the requirements is violated, the (i) problem is
called ill - posed. This is the very situation, which is observed in
solving the IHTP.$

Problem	Reseachers	Time
* Historical climat and heat conduct:	te Fourier, Poisson, Lon Kelvin	19th centuary
of Earth 's grou layer	Avst han	in inverse methods
* Detemination of	Mirsepassi T.J. (67	1 0 cg 1958
unsteady heat fl	luxes Stolz G	1960
	BECK J.V. Aldoshin G.T.	1962 and later
	Golosov A.S. Zhuk V.I.	1968 and later
	Alifanov O.M.	1969 and later
7 1901		

ТР 1	(C O N	TINUATION)	1 /
*	Application of the	Shumakov N.V.	1955 and later
	principle of regular		
	regime for heat fluxes		
	recovery		
*	Pseudo - inverse heat	Giedt W.H.	1955
	conduction problem	Kastelin O.N.	1056
	5	Bronsky L.N.	subhin 100 cents
*	Heat conduction problem	Stefan J. Let I-D I	start Corcha 1890
	in the Cauchy genera -	Tyomkin A.G.	1961
	lized formulation	Burggraf O.R.	1964

C			0	С
TP 1		On mathematical met	hods to a solution of ill-posed inverse problems	1 / 20
	M (Sta	ethod tement)	Researchers Tim	e
			Carleman T first attempt to Solve inverse Solve problem 1926 1943	
	Cond well	itionally - - posed probl ems	Isvrentiev M.M. Oreconditionally 1953 and Ivanov V.K. Jul Julian 1956 and	later later
			John F. Solves Win By Onduction by Equation of inverse truck 1955 and	later
*	Integ	gral equations of first kind	Phillips D.L.1962Twomey S.1963 and	later
*	Requi	larization	Tikhonov A.N. Lavrentiev M.M. Ivanov V.K.	later
union Southert	prine	ciple)	Arsenin V.Ya., Morozov V.A.,	
sitted .	Iter	ative regularization	Bakushinsky A.B., Glasko V.B. Alifanov O.M. Rumyantsev S.V. & mothematically grounded	later
		monograph	1 - 2 Liones? Lyones	

(0	\sim
TP 1	(С 0	NTINUATION)	1 / 21
	- for solving inverse heat conduction problems	Tikhonov A.N., Glasko V.B. Alifanov O.M. Artyukhin E.A.	1967 1971 and later
*	Iterative regularization method	Alifanov O.M. Artyukhin E.A. Rumyantsev S.V. Mikhailov V.V. Yudin V.M.	1974 and later
*	Quasi - inversion method	Latt'es R., Lions J L.	1967
*	Artifical hyperbolization method	Alifanov O.M.	1971

C		0		0
TP 1	Heuristic	requlari	zation	1 / 22
	Approach	Researchers	Time	
*	Direct methods	Shumakov N.V., Stolz G. Beck J.V.	1955 and la 1960 1962 and la	iter
*	Trial - and - error method	Kozdoba L.A.	1968 and 1	ater
*	Linear dynamic filtration	Symbirsky D.F. Matsevitiy Yu. M., Myltanovsky A.V.	1976 and 1 1977 and 1	ater.

VI. Principles of Solution for Ill-posed Problems

Principles of Solution for Ill-posed Roblems

Conditionally well-posed statements
 Approximation of the inverse operator A⁻¹ By
 a family of continuous operators

Au = f

1. A conditionally well-posed problem statement: 1) a solution M∈M⊆DA the demain of the operator Jefinition 2) a solution is unique 3) a solution is stable for $f = f + \Delta f \in M$ A class of well-posedness (acceptable solutions) 2. - self-regularization & (direct methods) - Tikhonov's regularization Sources of the self (natural)-regularization: 1) a regularization effect of heating 2) "Viscous" properties of computational algorithms notwal Silfration and of might Solution

VII. Regularization of Unstable Problems by Tikhonov Method

Tikhonov Regularization Method

$$Au = f$$
, $u \in U$, $f \in F$
 A^{-4} is the inverse operator
If A^{-4} is bounded : $U = A^{-4}f$
But A^{-4} is not obligatory continuous (!)
Regularizing operator R_{d} : $A = Scalar$
1. $D_{R_{d}} = F$, $d > 0$; 2. R_{d} is continuous in F;
3. $R_{d} Au \xrightarrow{d} 0$ $U \xrightarrow{q} regularizing parameter$
 $\{Ah, f_{\delta}\}$ -are some approximations $\{A, f\}$
with $G_{T}(F_{\delta}, f) = \delta$
(distance of $U(Ah, A) \equiv \sup_{u \in U} \rho(A_{h}u, Au) \leq h(>0)$
 $d_{u} = G = \{\delta, h\}$ is the error of input data
 $\int A_{\sigma} \delta \int A_{\sigma} \delta$
 $\int A_{\sigma} \delta \int A_{\sigma} \delta$

 \bigcirc

 \bigcirc

Regularizing operator:
1.
$$\exists \delta_0 > 0, h_0 > 0$$
: k_d is specified for $\alpha > 0$
and $A_h, f_{\overline{o}}$:
 $P_F(f_{\overline{o}}, f) \in \delta \in \delta_0$, $d_{\overline{o}}(A_h, A) \leq h \leq h_0$
2. $\exists d = \alpha(G)$: $\lim_{G \to 0} u_{d(G)} = \overline{u}$
Regularizing algorithm = Regularizing operator
full of uses Some $+$ Method for α selection
being solved \downarrow was some $+$ Method for α selection
being solved \downarrow was some \downarrow method proposed by Tikhanov
Smoothing functional method proposed by Tikhanov
 $P_{\alpha} [u, A, f] = (P_F^2(Au, f) + \alpha \Omega[u], U \in \Pi(\Omega))$
where P_F is the residual in the space F ; function Ω
where P_F is the residual in the space F ; function Ω
 $M_e = \{ u : \Omega[u] \leq 0 \}, C \geq 0 =$
 $= compact in U$
 $Example : \Omega = P_V(u, u^*),$
 $P_{\nabla}(u_1, u_2) \leq P_V(u_1, U_2)$

A is continuous, single-valued and additive; $\Omega[u]$ is rigorously convex; $\forall f \in F \exists u_{d} \in I(\Omega) : \min \Phi_{d}[u] = \Phi_{d}[u_{d}],$ u = Q = Q

Procedure for minimization of PL + a proper role for choosing L is <u>a regularizing algorithm</u> for an ill-posed problem

Iterative Regularization is another effective method for solving ill-posed problems Jevation number is the regularization parameter

VIII.

Methods and Algorithms for Solving Inverse Heat Transfer Problems Direct Semi-Analytical Methods

METHODS OF SOLVING ILL-POSED INVERSE PROBLEMS

<u>Universal methods:</u> a priori information of most general character

Examples: Tikhonov's regularization method; Iterative regularization method

<u>Problem-oriented methods:</u> specific data on the problem Example: Direct methods

Boundary IHCP:

1. A boundary-value formulation.

2. The Cauchy formulation.

3. A variational formulation.

Direct Semi analytical Direct Numerical methods Regularization of semi-analytical forms. Regularization of numerical forms. Herative Regularization

Direct Semi-Analytical Method

Boundary IHCP

$$\frac{\partial T}{\partial \tau} = a \frac{\partial^2 T}{\partial x^2}, \quad x \in (0, b), \quad \tau \in (0, \tau_m],$$

where a = const > 0.

 $T(x, 0) = \varphi(x), \quad x \in [0, b]$

$$-\lambda \frac{\partial T(b, \tau)}{\partial x} = q^*(\tau), \quad \tau \in [0, \tau_m], \quad \text{from }$$

where $\lambda = \text{const} > 0$.

$$T(d, \tau) = T^{*}(\tau), \quad \tau \in [0, \tau_{m}] \quad 0 < d \le b$$

$$q(\tau) = -\lambda^{\partial T(0, \tau)}/\partial x. \quad - ? \qquad \text{object of modely the form of the inverse problem}$$
Boundary tralue statement of the inverse problem
$$Superformulator form for the inverse problem for the inverse problem for the inverse problem of the inverse problem for the inv$$

where

$$\vartheta(x,\tau) = \frac{1}{\lambda} \left\{ \frac{a\tau}{b} + \frac{3(b-x)^2 - b^2}{6b} + \frac{2b}{\pi^2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{1 k^2} \times \left\{ x \exp\left[-k^2 \pi^2 \frac{a\tau}{b^2}\right] \cos\left(k \pi \frac{b-x}{b}\right) \right\}.$$

Integral form of IHCP:

$$Au \equiv \int_{0}^{\tau} u(\xi) K(\tau - \xi) d\xi = f(\tau), \quad \tau \in (0, \tau_{m}], \quad \text{for } the problem :$$

$$u(\tau) = q(\tau); \quad K(\tau - \xi) = \partial \vartheta(d, \tau - \xi)/d\tau;$$

$$f(\tau) = T^{*}(\tau) - \int_{0}^{\tau} q^{*}(\xi) \quad \frac{\partial \vartheta(b - d, \tau - \xi)}{\partial \tau} d\xi.$$
Instability of the problem : Solution to be used to be unstable

$$\Delta u(\tau) = C \sin \omega \tau$$

$$u(\tau) \in U, \quad u_{\varepsilon}(\tau) \in U$$

$$\int_{0}^{\tau} u_{\xi}(\xi) K(\tau-\xi) d\xi \to \int_{0}^{\tau} u(\xi) K(\tau-\xi) d\xi$$

.

$$\begin{array}{cccc} & & & & & & & \\ & & & & & \\ & & & &$$

Not Constant time steps: $\Delta T = \frac{T_m}{m} + \frac{1}{2} \frac$ $\Delta \mathcal{V}_{1n} = \Delta \mathcal{V}_{2}, n+1 = \dots = \Delta \mathcal{V}_{m-n+1}, m$ $\sum_{i=1}^{n} \hat{u}_i \Delta v_{n-i} = f_n, \quad n = 1, 2, ..., m$ $A_{\Lambda} u = f$ where $\Delta v_{n-i} \equiv \Delta v_{in} = v(d, \Delta \tau (n-i+1)) - v(d, \Delta \tau (n-i))$ $b_{i} - d_{i} \alpha_{j} \sigma_{i} \rho_{j} \sigma_{j} \sigma_$ coefficients instead of $\frac{m(m+1)}{2}$! m

$$\det A_{\Delta} = (\Delta \mathcal{V}_{o})^{m}$$

-

STEP REGULARIZATION PRINCIPLE

$$\Delta \tau_{cr} = \beta^2 Fo^{**}/a$$

Perturbated Input Data

eith. Preliminary smoothing of the input temperature data Matching of a temperature residual with the Smoothing of Sf, cyperimental data lyor Cerbic splines then can interpolate to First T(Capini) measurement error

$$m = \frac{T_m}{\Delta T} : \int_{0}^{T_m} [T(d,\tau,q_{m}) - f(\tau)]^2 d\tau \simeq \delta$$

where $\delta_{f}^2 = \int_{0}^{T_m} G^2(\tau) d\tau$

General form of the recurrent algorithms: $\mathbf{u}_{n} = \mathbf{A}_{0}^{-1} \left(\mathbf{f}_{n} - \sum_{i=1}^{n-1} \left(\mathbf{A}_{n} \right)^{i} \mathbf{u}_{i} \right), \quad \mathbf{n} = 1, \quad \mathbf{m}_{n}, \quad \mathbf{u}_{i} \in \mathcal{U}$

are vectors of unknown parameters; where u

> f are known vectors;

 A_s , s = 0, m-1 are square matrixes;

is a number of time intervals. m

where

 $G(x, y; x', y'; \tau - \xi)$ is the Green's function

Step Approximation

)

IX.

Methods for Solving Linear Inverse Heat Conduction Problems for Bodies with Movable Boundaries

METHOD OF FICTITIOUS BOUNDARIES 32 Let domain Ω contains another D. Temperature $T(p, \tau)$ domain p ∈ ∂D 1180mm is known. 98 Four stages of the method: 1. Transfer from domain $\overline{\Omega}$ and \overline{D} to new domains $\overline{\Omega}'$ and \overline{D}' : $\overline{\Omega} \subseteq \overline{\Omega}', \quad \overline{D} \supseteq \overline{D}';$ Tf(r) $\overline{\Omega'}$ - $\overline{D'}$ is the domain of simple form, 2. Solve an appropriate direct problem in $\overline{D'}:T(\tau)|_{\partial D'},q(\tau)|_{\partial D'}$. 3. Solve of IHCP in $\overline{\Omega}' - \overline{D'}$: $T_{f}(\tau) = T(\tau)|_{\partial \Omega'}$. 4. Solve a direct problem in $\overline{\Omega'} - \overline{D'}$ and define the unknown boundary conditions at $\partial\Omega$. Examples of application (bodies with movable boundaries) One-dimensional problem 2. Two-dimensional problem fictitious boundaries τ_m $X_1(\tau)$ Xz(t) $X_3(\tau)$ $X_4(\tau)$ fi Frind XICh d1 d2 X rectangle OABC The Moving boundaries with known is domain $\overline{\Omega'}$ temperatures ed points

X. Numerical Solution of Nonlinear IHCP

Condition of weak stability of finite-difference solution of IHCP:

 $|| u_{h} || \le C_{h} || f_{h} || ,$ (5)

where C_h is a positive constant, depending on parameters of approximation.

Condition of the weak stability: Ato ter SFO allowable viscosity as a regularizing factor The first differential approximation of a difference scheme: $\frac{\partial T}{\partial \tau}\Big|_{ln} + \frac{\Delta \tau}{2} \frac{\partial^2 T}{\partial \tau^2}\Big|_{ln} = a \frac{\partial^2 T}{\partial \tau^2}\Big|_{ln}$ $\frac{w^2}{a} \frac{\partial T}{\partial \tau} + \frac{\partial^2 T}{\partial \tau^2} = w^2 \frac{\partial^2 T}{\partial x^2}$ Number of the body with the second secon Hyperbolic heat conduction equation: Semi-infinite body, the first boundary-value problem Sub-type by $T(1, Fo) = T_W (Fo - \sqrt{\frac{\Delta Fo}{2}}) \exp\left[-\frac{1}{2}\right]$ $\frac{1}{\sqrt{2\Delta Fo}} \int_{\sqrt{\Delta Fo/2}}^{Fo} T_{W}(\xi) \exp\left[-\frac{Fo-\xi}{\Delta Fo}\right] \times$ $\frac{I_1\left(\frac{\sqrt{(Fo-\xi)^2}-\Delta Fo/2}{\Delta Fo}\right)}{\sqrt{(Fo-\xi)^2-\Delta Fo/2}} d\xi,$ where $T_W(Fo)$ is the surface temperature $(T(0, Fo) = T_W(Fo)); \sim c$ $I_1(\cdot)$ is the modified Bessel's function of the first kind $\Delta Focr \simeq 0.04$ The implicit difference scheme possesses higher viscous regularizing properties then the explicit scheme: $\Delta Fo_{er} = 0.01 - 0.02$

PRELIMINARY SMOOTHING OF THE INPUT TEMPERATURE DATA

It is advisable to use algorithms of smoothing which give uniform approximation of the function and its derivatives. $q_{\kappa}W/m^2$

Recovery of the heat flux by the explicit T-type scheme in mentioned points of re-entry vehicle: —— is a true solution. Error of input data $3 \sigma (\tau) = 0.08 \cdot T_{max}$,

 Δ Fo_d = 0.05; Results: ••••• is for smoothing T_{δ}(τ) by the regularization method of the second order; --- is for

5.

XI. Artificial Hyperbolization of Heat Conduction Equation 6.

 $\frac{\partial T}{\partial \tau} + \alpha \frac{\partial^2 T}{\partial \tau^2} = a \frac{\partial^2 T}{\partial x^2}, \quad x \in (0, b), \quad \tau \in (0, \tau_m],$ of Heat Conduction Equation Hyperbolization (9) where parameter a corresponds to fictitious relaxation time <u>Inverse problem</u>: it is required to find function $T(x, \tau)$ if

 $T(x, 0) = 0, \quad 0 \le x \le b; \quad \frac{\partial T(x, \tau_m)}{\partial \tau} = 0, \quad 0 \le x \le d;$ M public for the transformation of transformation of the transformation of tra

where $T_{\chi_{p}}^{\alpha}$ are temperatures, obtained from a solution of Fourier general heat conduction equation using a known boundary condition $q^{*}(\tau)$ and condition $q^{\alpha}(\tau)$ computed in in the result of IHCP solution for hyperbolic equation (9);

 δ is the known error of temperature data T^{*}.

XII. Tikhonov Regularization Method

Onedimensional problems

General integral form of linear boundary IHCPs:

$$\int_{0}^{\tau} u(\xi) K(\tau,\xi) d\xi = f(\tau), \ \tau \in (0,\tau_m],$$

where $u(\tau)$ is the unknown function, of the surface, heat potential density). Hilbert ces Spuces where $u(\tau)$ is the unknown function (heat flux, temperature

$$Au = f, u \in U, f \in F$$

 $f = f_{\delta}, \quad \|\bar{f} - f_{\delta}\|_{F} \leq \delta \quad \text{Enown} \quad \text{def}$ $\frac{\|Au - f_{\delta}\|_{F} \leq \delta}{\|F \leq \delta} \Rightarrow \quad \exists \delta \quad \text{subpotential}$ $f = \int_{\delta} ||F| \leq \delta \quad \Rightarrow \quad \exists \delta \quad \text{subpotential}$ A⁻¹ can be unbounded

 $\Delta = ||Au - f_{\delta}||$ is a residual

$$u = u_{\sigma} \in \mathbb{D}_{\sigma}$$
: min $|| u - u^{*} ||_{U}$
 $u \in \mathbb{D}_{\sigma}$

$$V = W_2^{\kappa} [0, T_m]$$
 is the Subolev space
 $f \in L_2 [0, T_m]$

$$\begin{array}{c} \min_{u \in D_{\delta}} \|u - u^{*}\|_{W_{2}^{k}}^{2}; \\
D_{\delta} = \{u: \|Au - f_{\delta}\|_{L_{2}}^{2} \leqslant \delta^{2}\}, \\
\end{array}$$
Continuous ad linear

$$\begin{aligned} & \text{Lagrangian Method} \\ F[u, u^*, \lambda, y] = || u - u^* ||_{W_{2}^{k}}^{2} + \lambda(||Au - f_{\delta}||_{L_{4}}^{2} + \gamma^{2} - \delta_{L_{4}}^{2}) \\ & a_{uxy}||ary variable} \\ \partial F[u, u^*, \lambda, \gamma]/\partial \lambda = 0 \qquad \partial F[u, u^*, \lambda, \gamma]/\partial \gamma = 0 \\ & \gamma = 0 \\ \lambda : ||Au^{\lambda} - f_{\delta}||_{L_{4}}^{2} = \delta_{L_{4}}^{2} \\ & \mathcal{L} = \frac{1}{\lambda} : \\ \hline \\ & \text{Im} \left\{ \Phi[u, u^*, a] = ||Au - f_{\delta}||_{L_{4}}^{2} + \alpha ||u - u^*||_{W_{2}^{k}}^{2}]; \\ & ||Au^{\alpha} - f_{\delta}||_{L_{4}}^{2} = \delta_{L_{4}}^{2} \\ & ||Au^{\alpha} - f_{\delta}||_{L_{4}}^{2} = \delta_{L_{4}}^{2} \\ & \text{Condition } (A') \text{ is } \frac{the principle (method) of residual}{to var} \\ & \text{Condition } (A') \text{ is } \frac{the principle (method) of residual}{to var} \\ & ||z||_{L_{4}}^{2} = \int_{0}^{2m} z^{2}(\xi)d\xi; \\ & \text{Notion } \left\| z \|_{W_{2}^{k}}^{2} = \int_{0}^{2m} dx \left[\int_{0}^{z} u(\xi) K(\tau, \xi) d\xi - f_{\delta}(\tau) \right]^{2} + \\ & + \alpha \int_{0}^{2m} \sum_{j=0}^{2} r_{j}(\xi) [u(\xi) - u^{*}(\xi)]^{(j)2} d\xi \right], \\ & \text{d: } \int_{0}^{2m} \left[\int_{0}^{z} u^{2}(\xi) K(\tau, \xi) d\xi - f_{\delta}(\tau) \right]^{2} d\tau = \delta_{L_{4}}^{2} \\ & \text{d: } \int_{0}^{2m} \left[\int_{0}^{z} u^{2}(\xi) K(\tau, \xi) d\xi - f_{\delta}(\tau) \right]^{2} d\tau = \delta_{L_{4}}^{2} \\ & \text{Move } Y_{j}(\xi) = Y \right] = dt \end{aligned}$$

)

Euler equation for
$$\mathfrak{P}$$
:

$$\begin{bmatrix}
\xi & u(\zeta) K_1(\xi, \zeta) d\zeta + \int_{\xi}^{T_m} u(\zeta) K_2(\xi, \zeta) d\zeta - \bar{b}(\xi) + \\
+ \alpha \sum_{j=0}^{k} (-1)^j [r_j(\xi) (u(\xi))^{(j)}]^{(j)} = 0, \\
\text{where } K_1(\xi, \zeta) = \int_{\xi}^{T_m} K(\tau, \xi) K(\tau, \zeta) d\tau; \\
K_2(\xi, \zeta) = \int_{\xi}^{T_m} K(\tau, \xi) K(\tau, \zeta) d\tau; \\
\bar{b}(\xi) = \int_{\xi}^{T_m} f_{\delta}(\tau) K(\tau, \xi) d\tau. \\
\text{Boundary conditions:} \\
\sum_{j=p}^{k} (-1)^j [r_j(\xi) u^{(j)}(\xi)]^{(j-p)}|_{\xi=0;\tau_m} = 0, p=1, 2, ..., k \\
\begin{cases}
\psi \\ u^{cl}(\xi) \\
\end{bmatrix} \Rightarrow u_{\delta}^{cl}(\xi) \\
\text{Underfine und} \\
\text{Solve - 5 but anothe spreach} \\
\text{Solve - 5 b$$

 \bigcirc

0

 \bigcirc

$$\sum_{i=1}^{n} \hat{u}_{i} \varphi_{ni} = f_{\delta n}, n = \overline{1, m}$$

$$A_{\Delta} u = f_{\delta}, \qquad \text{Same as before}$$

where $\mathbf{A}_{\mathbf{A}}$ is the lower triangular matrix;

$$\mathbf{u} = \left\{ \hat{u}_i \right\}_{1}^{m}; \qquad \mathbf{f}_{\delta} = \left\{ f_{\delta n} \right\}_{1}^{m}$$

If $k = 2, u^* = 0$; $r_0 = 0, r_1(\tau) = r_1 = \text{const} \ge 0, r_2(\tau) = r_2 = \text{const} \ge 0$

$$\hat{\Phi}_{\alpha}[u] = \sum_{n=1}^{m} (\sum_{i=1}^{n} \hat{u}_{i} \varphi_{ni} - f_{\delta n})^{2} + \frac{\alpha r_{1}}{\Delta \tau^{2}} \sum_{n} (\hat{u}_{n} - \hat{u}_{n-1})^{2} + \frac{\alpha r_{2}}{\Delta \tau^{4}} \sum_{n} (\hat{u}_{n+1} - 2\hat{u}_{n} + \hat{u}_{n-1})^{2}.$$

d:
$$\sum_{n=1}^{m} (\sum_{i=1}^{n} \hat{u}_{i}^{\alpha} \varphi_{ni} - f_{\delta n})^{2} = \delta_{Em}^{2}$$

$$n = 1 \quad i = 1$$
Choice determined by degree of smoothwate and B.C.s
$$(\mathbf{B} + \alpha \mathbf{C})\mathbf{M} = \mathbf{d} + \mathbf{g}$$

where

$$\mathbf{B}: \quad b_{kl} = \sum_{n=l}^{m} \varphi_{nk} \varphi_{nl}, \quad b_{kl} = b_{lk}, \quad k, l = \overline{1, m}$$
$$\mathbf{0}: \quad \mathbf{0}_{\kappa} = \left\{ \sum_{n=k}^{m} f_{\delta n} \varphi_{nk} \right\}, \quad k = \overline{1, m}$$

 $u_1 - u_0 = C_{10}$,

 $u_{m+1} - u_m = C_{1m};$

 $r_{1}/\Delta \tau^{2} = 1$, $r_{2} = 0$,

8.

a regularization of the first; a regularization of the second order ; order .

 $r_1 = 0, r_2 /_{\Delta \tau^4} = 1,$

 $u_0 - 2u_1 + u_2 = C_{20}$,

 $\begin{array}{c} -u_{-1} + 3u_{0} - 3u_{1} + u_{2} = C_{30}, \\ \\ u_{m-1} - 2u_{m} + u_{m+1} = C_{2m}, \end{array}$

 $|-u_{m-1}+3u_m-3u_{m+1}+u_{m+2}=C_{3m}$

$$g = [-\alpha C_{10}, 0, \dots, 0, \alpha C_{1m}]^{T}; \qquad g = [\alpha (C_{20} + C_{30}), \\ - 2 C_{20}, 0, \dots, 0, \alpha C_{2m}, \alpha (C_{3m} - C_{2m})]^{T};$$

Sampling the regularization parameter α

1. A residual principle:

$$\alpha_{r}: || A_{\Delta} \mathbf{u}^{\alpha} - \mathbf{f}_{\delta} ||_{\mathbf{E}_{m}^{=}} \delta_{\mathbf{E}_{m}}, \quad \left(\delta_{\mathbf{E}_{m}^{*}} h || \mathbf{u}^{\circ} || \right), \quad \delta_{\mathbf{E}_{m}^{*}} \simeq \left(\sum_{n=1}^{\infty} \sigma_{n}^{2} \right)^{\frac{1}{2}}.$$

2. A method of quasioptimal parameter:

$$\lim_{\alpha} || \propto \frac{du^{\alpha}}{d\alpha} ||$$

$$If \quad a_{j+1} = ka_j, \text{ rge } 0 < k < 1, \ k \sim 1, \qquad \alpha \frac{du^{\alpha}}{d\alpha} \simeq \frac{u^{\alpha_{j+1}} - u^{\alpha_j}}{k-1}$$

$$d_i : || u^{\alpha_{j+1}} - u^{\alpha_j} ||$$

Normal distribution of errors in input temperatures; is true solutions; is solutions of IHCP when $3\sigma = 0.01 T^*_{max}$; is solutions of IHCP when $3\sigma = 0.1 T^*_{max}$.

is a vector of known parameters; $\alpha_{\mathbf{k}}$ is a regularization parameter; $\Omega_{\mathbf{k}}$ is a stabilization function, for example:

> $\Omega_l = k_1 \| \Delta \mathbf{T}_l \|_{\mathbf{E}_m}^2 + k_2 \| \Delta^2 \mathbf{T}_l \|_{\mathbf{E}_m}^2, \quad k_1 \ge 0, \quad k_2 > 0,$ AB frite and Second Finite differences,

where respectively.

$$d = d_{P} : \rho_{l}(\alpha) \equiv \sum_{\substack{n=1 \\ n=1}}^{m} (T_{Ln}^{\alpha} - T_{n}^{*})^{2} = \delta^{2}$$
$$\delta^{2} \simeq \sum_{\substack{n=1 \\ n=1}}^{m} \sigma_{n}^{2}$$

$q(\tau) = -\lambda(T(0,\tau))\partial T(0,\tau)/\partial x$

Choice of regularization parameters α_1 :

$$\alpha_{1} = \alpha_{1} \qquad \sum_{n=1}^{m} \left(T_{Ln}^{\alpha} - T_{n}^{\star} \right)^{2} = \delta_{E_{m}}^{2},$$

where T_{Ln}^{α} is temperature calculated at the point x = b (from the solution of a direct problem);

 T_{n}^{\star} is the experimental temperature.

Example of computations: — is an exact solution; Normal distribution of errors in the input temperatures, $3 \sigma = 0.05 \cdot T_{max}^{*}; \lambda(T)$ and C(T) corresponded to a graphite $q^{*}(\tau) = 0;$ 1 - the regularized numerical method; 2 - the direct numerical method ($\alpha_1 = 0$, 1 = 1, L).

Finite-difference analogy of $\Phi_{\alpha}[u]$:

$$\hat{\Phi}_{\alpha}[\mathbf{u}] = \sum_{n=1}^{m} \sum_{i=1}^{L} \left(f_{1n} - f_{1n}^{\star} \right)^{2} + \alpha \sum_{n=1}^{m} \sum_{i=1}^{L} \left(u_{1n} - u_{1,n-1} - u_{1-1,n} + u_{1-1,n-1} \right)^{2}, \quad (18)$$

min
$$\hat{\Phi}_{\alpha}[u]$$
 under the conditions $u_{0n} = u_{1n}$, $u_{L+1,n} = u_{Ln}$

n = 0, m+1;
$$u_{10} = u_{11}$$
, $u_{1,m+1} = u_{1m}$, $i = 0, L+1$:
 $A_{\Delta}^{T} A_{\Delta} u + \alpha C u = A_{\Delta}^{T} f^{*}$, (19)

where

$$C = \begin{bmatrix} s-s \\ -s & p-s \\ -s & p-s \\ -s & s-s \end{bmatrix}_{j \times j,} S = \begin{bmatrix} 1-1 \\ -1 & 2-1 \\ -1 & 2-1 \\ -1 & 2-1 \\ -1 & 2-1 \\ -1 & 1 \end{bmatrix}_{L \times L,} P = \begin{bmatrix} 2-2 \\ -2 & 4-2 \\ -2 & 4-2 \\ -2 & 4-2 \\ -2 & 4-2 \\ -2 & 2 \end{bmatrix}_{L \times L}$$

where $j = L \times m$,

XIII. Iterative Regularization Method

ITERATIVE REGULARIZATION

The iterative regularization method can be used for solving various inverse problems (retrospective, boundary, coefficient geometric and combined problems) both linear and nonlinear, in nonoverdetermined and overdetermined formulations.

Sufficient conditions for regularization of a certain iterative method

$$u_{n+1} = \Phi(u_n, \delta, h).$$
 (24)

Theorem 1. If

1) for $\delta = h = 0$ \exists $\lim_{n \to \infty} u_n = \overline{u} \in U_f$ $(\overline{u} = \overline{u} (u_0));$ 2) $\Phi (u_n, \delta, h)$ is continuous at all points { u, 0, 0 } except maybe { u, 0, 0 }: u \in U_f; 3) $\forall u \in U_f$, $\Phi (u, 0, 0) = u$.

Then $\exists N(\sigma)$: $\lim_{N(\sigma)} u_{N(\sigma)} = \overline{u}$.

Theorem 2. Steepest descent method and conjugate gradient

method satisfy conditions of Theorem 1. Thus, appropriate regularized approximations converge to normal (with respect to initial approximation) solutions of Eq.(20) with σ error tending to zero.

t

How TO CHOOSE N (
$$\sigma$$
)?
Residual criterion:
Denote $\Delta_n = || A_h u_n - f_{\delta}||_F$, $\Delta_r = h || u^{\circ} || + \delta$.
Theorem 3. For the steepest descent method
 $\exists N_r = \min_n \left\{ n: \frac{\Delta_n^2 + \Delta_{n+1}^2}{2\Delta_n} < C \Delta_r \right\}$, $C > 1$
and $\lim_{\sigma \to 0} u_{N_r} = u^{\circ}$.
 $|| u_n - u^{\circ} || \ge || u_{n+1} - u^{\circ} ||$, $\forall n < N_r$.
Similar criterion has also been obtained for the conjugate
gradient method.
 $\underline{A || u^{\circ} || << \delta}$
 $\underline{Geperalized Residual Criterion}$
If solution to (20) is unique, then u° in Δ_r may be

replaced by u_n

$$\Delta rn = h \| u_n \| + \delta$$

14.

Ň

Nonlinear case

The validity of this approach for solution of ill-posed problems in nonlinear formulations has been demonstrated by the computer-experiment technique.

Au = f, $u \in U$, $f \in F$,

adat her water . where $A: V \rightarrow F$ is a nonlinear continuous Frechet differentiable operator; V and F are Hilbert spaces

The gradient $J'u = (A'u)^*(Au-f)$, where A'u is the Frechet derivative of the operator A at the point U; (A'u) * is the operator adjoint of the operator A'

The steepest descent method:

$$U_{n+1} = U_n - \beta_n J' U_n , \quad n = 0, 1, ...,$$

$$\beta_n : J(U_{n+1}) = \min_{\substack{\beta \ge 0}} J(U_n - \beta J' U_n)$$

$$\begin{array}{rcl} & \underline{The \ stopping \ by \ additional \ measurement}} \\ u(\tau) & u(\tau) \ is \ unknown \\ & f \delta_1(\tau) = f_1(\tau) + \Delta f_1(\tau) \\ & f \delta_2(\tau) \\ & f \delta_2(\tau) = f_2(\tau) + \Delta f_2(\tau) \\ & \tilde{N}: \ \min \left\{ \int_{n}^{Tm} \left[T(u_n(\tau), d_2, \tau) - f \delta_2(\tau) \right]^2 \right\} \end{array}$$

1.

Determination of the gradient of the residual functional

 $J [u] = \frac{1}{2} || A u - f ||_F^2 \longrightarrow J' u$.

Two analytical methods:

- with help Green's functions (for linear problems);
- on the base of adjoint problems (both for linear and nonlinear problems); $(A'u)^*$

An account of a priori information about a solution:

- qualitative information, such as, smoothness of unknown functions;
- quantitative information about the values of the functions and their derivatives.

Two methods:

- 1) A direction of discent is chosen in the initial space L_2 or \mathbb{R}^n , but in such a way that obtained approximations remain in the class of smooth functions.
- 2) The iterative sequence is constructed directly in Sobolev's space W_2^1 .

Modifications of gradient algorithms (for solution of

multiparameter inverse problems)

- <u>Two cases:</u> 1) To determine simultaneously a certain set of functions and parameters (e.g. several coefficients in equation with partial derivatives, two boundary conditions, boundary and initial conditions, and so on).
 - 2) To consider smoothness of unknown function when the function is represented in terms of one of its derivatives and in terms of values at specific points.

The gradient-method modifications: instead of the scalar quantity of descent step the descent-step vector is determined at each iteration for each individual component on the basis of residual minimization.

Stopping the iteration, when initial data error is unknown

- 1. Stopping by additional measurements
- 2. Stopping by the increment of functional

Coefficient Inverse Heat Conduction Problem

$$\begin{split} C(T)T_{\tau} &= (\lambda(T)T_{x})_{x}, \quad (x,\tau) \in Q = (0,b) \times (0,\tau_{m}]; \\ T(x,0) &= \xi_{0}, \quad x \in [0,b]; \\ T(0,\tau) &= T_{1}(\tau), \quad T(b,\tau) = T_{2}(\tau), \quad \tau \in [0,\tau_{m}]; \\ T(d_{i},\tau) &= f_{i}(\tau), \quad i = \overline{1,N}, \quad \tau \in [0,\tau_{m}], \\ 0 &< d_{1} < \ldots < d_{N} < b \end{split}$$

where C(T); $\underline{T_1}(\tau)$; $T_2(\tau)$; $f_i(\tau)$, $i = \overline{1, N}$ are known functions; ξ_0 ; b; τ_m ; d_i , $i = \overline{1, N}$ are given numbers $\mathcal{A}(T) - ?$

$$\frac{\lambda(\tau)}{\lambda(\tau)}, T \in [T_0, T_M]$$

$$\lambda(T): \min_{\lambda(T)} |J(\lambda) - \delta_J^2|, \qquad \text{residual}$$

$$J(\lambda) = \sum_{i=1}^{N} \int_{0}^{\tau_m} \rho_i(\tau) [T(\lambda, d_i, \tau) - f_i(\tau)]^2 d\tau$$

$$t = \text{regists for different}$$

$$M = 0 \text{ measurements}$$

$$\begin{split} B_{j}(\bar{T}) &= B_{0}(\bar{T} - jH), \quad j = -1, 0, 1, \dots, M + 1; \\ B_{0}(\bar{T}) &= \frac{1}{6H^{3}} \left[(\bar{T} - 2H)_{+}^{3} - 4(\bar{T} - H)_{+}^{3} + 6(\bar{T})_{+}^{3} - 4(\bar{T} + H)_{+}^{3} + (\bar{T} + 2H)_{+}^{3} \right]; \\ &+ (\bar{T} + 2H)_{+}^{3} \right]; \\ \text{where } \bar{T} &= T - T_{0}; \quad (\bar{T} - g)_{+}^{3} = \begin{cases} (\bar{T} - g)^{3} & \text{при } \bar{T} \ge g \\ 0 & \text{при } \bar{T} < g. \end{cases} \end{split}$$

$$\widetilde{\lambda}(T) = \sum_{j=-1}^{M+1} \lambda_j B_j(\overline{T}),$$

where λ_j are unknown parameters

Ψ.

where $\Psi(x, \tau)$ is adjoint variable

Descent step:

$$\begin{aligned}
& \text{Multiple states} \\
&$$

where $v(\Delta \tilde{\lambda}^k, d_i, \tau)$ is the temperature increment:

$$\begin{split} \mathbf{v}_{\tau} &= a_1 \, \mathbf{v}_{xx} + a_2 \, \mathbf{v}_x + a_3 \, \mathbf{v} + \frac{1}{C} \left(\Delta \widetilde{\lambda}^k \, T_{xx} + \Delta \widetilde{\lambda}_T^k \, T_x^2 \right), \\ &(x, \tau) \in Q; \\ &\mathbf{v}(x, 0) = 0; \\ &\mathbf{v}(0, \tau) = \mathbf{v}(b, \tau) = 0; \\ &\Delta \widetilde{\lambda}^k = \sum_{j=-1}^{M+1} P_j^k B_j(\bar{T}). \\ &j = -1 \end{split}$$

Solution sequence (each iteration) early Step 0 to data L, SCp, To Ti, TL (Ti, Si), Si = 1 (combe) Weed sume $\Lambda(T) = \Lambda^{e} = Cenest (maybe)$ Step 1 D K=K+1 iteration # increment - Solve direct problem weig current Λ - Calculate residual, $\pi_{e}^{e} \leq \delta^{2}$ to done Step 2 Solve adjoint problem Son $\Psi(\pi_{e}t)$ requires $T(d_{i}, \tau) - f_{i}(\tau)$ Step 3 26 K=1 compute Y_{K} ($Y_{0} = 0$)

Nonlinear cases and disturbed data (space L_)

1 - a true solution; 2 - an approximation for disturbed input data by normal law, $3 \sigma = 0.05 \cdot T_{max}^{*}$ (stopping by criterion of residual, N = 7); 3 - an approximation for exact input data, N = 50

II. Nonlinear coefficient IHCP - reconstruction of the thermal conductivity $\lambda(T)$ with using spline-approximation

Exact input data

the unknown function;
 the solution of IHCP.

Exact and disturbed input data

1-the unknown function; 2-the initial approximation; 3,4-the solution of IHCP for exact and disturbed data respectively.

Results of computation for four cuttings by coordinate y and one time point $\tau = \tau / 2$.

XIV. Comparison of Methods for Solving Boundary IHCPs fast, con even be swel find weld his most universal real privation out this most universal

The conditions of effective application of the methods for the solution of boundary IHCPs

MN	:Distinctions:Direct approxi-:Direct						:Iterative:Regularized:Regularized										
2	:of applicat-		inate-	mate-analytical:n			eri-	:1	:regulari-:al				igebraic : n			umerical	
	:ion of me- :		: .	method		:cal me-		:zatioin			:	: method			: method		
	:	thods	:		:	th	bo	:	net	hod	:			:			
	:		:	(2)	:	(3)	:	(5)	:	(4)	:	(4)	
-											_			-			
1	:	2	:	3	:		4	:		5	:		6	:		7	
	The riti for of	peculia- es of a ulation IHCP											,				
1.	Line cons the prop	ar with stant mal perties		yes		3	788		3	es			yes			¥62	
2.	Non] line vari	linear of ear with lable TP		no		3	res		3	res			no			Yes	
3.	Hom heat ion	equation	-	yes		3	yes		3				yes			yes	
4.	Gene heat ion	eralized t-conduct equation	-	20		4	Yes		3	785			no			yes	
5.	Fix rie body	ed bounde s of a 7	.	yes			yes		1	yes			yes			yes	
6.	. Moving in boundaries of si a body			onedimen-			yes			yes			in onedimen- sional case				
7.	Fix rat	ed tempe- ure gause	5	уев			yes			yes			yes	6		yes	
8.	ten gau	velling perature ses		no			yes			уев			no			yes	
9.	One	dimension	al	yes			yes			yes			yes			yes	
10. Twodimensional				for the domains of simple shape			ains hape	yes		T	e1	for the do- mains of si mple shape			yes		
H	. 0	ver speei	fied	no			h.o		Y	es		a).	nc)		no	

Table
	<u>General condi-</u> <u>tions of appli-</u> <u>cation</u>					
12.	The determination of heat loads	yes	yes	yes	yes	yes
13.	The computation of temperature fields	no	yes	yes	no	yes
14.	The slowly alterat- ing heat-exchange processes (HP)	yes	yes	Yes	уев	yes
15.	The quickly alterat- ing and short-term HP	no	no	yes	yes	уез
16.	Low-temperature HP	yes	yes	уев	yes	yes
17.	High-temperature HP with essential- ly variable inten- sity	no	уег	yes	no	yes

.

-	N.	1		the second s		
1:	2 :	3	: 4	: 5 :	: 6	: 7
.8.	Small heat-depth of the instalat- ion of temperature gauges	yes	yes	yes	yes	yes
19.	Big heat-depth of the installation of temperature gauges	80	80	yes	yes	yes
20.	Metallic structural elements	yes	yes	yes	yes	уе
21.	Thermal protection and thermal insulat- ion	no	for materia with high 1 conductivity only	als yes beat ty	yes	yes
	The conditions of practical application	2				
22.	The complexity of the algorithms	simple	nediun co ait	ple- ty	heighten- ed com- plexity	complex
23.	Computation time expenses	small	innel1	madi	m medium	large
24.	Computation in real time scale	P ø		i b	1 e	impos sible
25.	The restrictions on the values of the steps of approxi- mation	very strict	strict		estri	ction
26.	Preliminary smooth- ing of initial data for high levels of erros	nęce	ssary	not	neces	sary
27.	Obtaining of the needed degree of smoothness of the results	impo		e p (b l e
28.	An account of the quantitative a priori information about an unknown solution.	imp (ssibl	e possi le	b- hard to	implemen
•						

\$5(\$) (i)

XV. Development and Validation of Mathematical Models of Heat Transfer

(

~

XVI. Application Results

 \bigcirc

Methods for characteristics determination

Traditional methods of characteristics

- Traditional methods are based on analytical solutions of the boundary-value problem for the heat conduction equation with constant coefficients.
- Heating conditions for samples used are rather simple and easy to reproduce.
- Rather narrow temperature range is realized in samples to provide constancy of characteristics.

V

Results of experimental data processing, specimen 1

KI

Thermal conductivity $\lambda(T)$ determination by solving the inverse problem with different values of initial approximation λ° .

Changing residual functional J depending on iteration number s.

Results of experimental data processing, specimen 2

Thermal conductivity $\mathcal{A}(T)$ determination by solving the inverse problem with different values of initial approximation \mathcal{A}° .

Changing residual functional J depending on iteration number s .

MA

Optimal Measurement Design

Measurement design E = {N, d}, where N is the number of thermosensors **d** is the vector of sensor coordinates ($d = \{d_i\}_{i=1}^{N}$ Problem: $\varepsilon = \varepsilon^*$: max $\Psi [F(\varepsilon)]$, where $F(\varepsilon) = \frac{1}{N} \tilde{\Phi}_{jn}$, $j, n = \overline{1, M}$; M + 3 - the number of intervals for $\lambda(T)$ approximation by B-splines $\Phi_{jn} = \sum_{i=1}^{N} \int_{0}^{T_m} \Theta_j(di,T) \Theta_n(di,T) dT;$ O; (di, T) are the sensitivity functions, $\Theta_j(di,\tau) = \frac{\partial T(di,\tau)}{\partial \lambda_i}, \quad j = -\overline{1, M+1}$

4

 \subset

× 9

TP 1	AR: Facility Tests	3/8							
AR5:	AR5: Thermal and Gas - dynamic Tests								
 Diagnostics of heat transfer boundary conditions and heat loads on structures during full-scale testing 									
* Ide	* Identification of thermal properties of heat-shield materials								
AR6:	AR6: Thermal - vacuum Test of Spacecrafts								
PROCEDURE OF TESTING									
1.	1. Special preliminary testing of object for the purpose of identification and correction of mathematical models of heat transfer processes								
2.	2. Choice of thermal simulator mode (inverse problem of control type)								
3.	Regular testing								

 \cap

 \bigcirc

 \bigcirc